Integration Problems

Example

1. Integrate $\int_{0}^{1} x^{-1 / 2} \arctan (\sqrt{x}) d x$.

Solution: First we u sub to make this problem easier. Let $u=\sqrt{x}$ so $d u=\frac{1}{2 \sqrt{x}} d x$ so $d x=2 \sqrt{x} d u$. When $x=0$, then $u=\sqrt{0}=0$ and when $x=1$, then $u=\sqrt{1}=1$ so, we have that

$$
\int_{0}^{1} x^{-1 / 2} \arctan (\sqrt{x}) d x=\int_{0}^{1} 2 \arctan (u) d u .
$$

Now we can use integration by parts to get $r=\arctan (u)$ and $d t=2 d u$ so $t=2 u$ and $d r=\frac{1}{1+u^{2}}$ so

$$
\int_{0}^{1} 2 \arctan (u) d u=\left.2 u \arctan (u)\right|_{0} ^{1}-\int_{0}^{1} \frac{2 u}{1+u^{2}} d u .
$$

Now we can v sub the second integral. Let $v=1+u^{2}$ so $d v=2 u d u$. So, we have that the integral is equal to
$2 \cdot 1 \cdot \arctan (1)-2 \cdot 0 \cdot \arctan (0)-\int_{u=0}^{u=1} \frac{1}{v} d v=2 \arctan (1)-\ln \left|1+u^{2}\right|_{0}^{1}=2 \arctan (1)-\ln 2=\frac{\pi}{2}-\ln 2$.

Problems

2. Integrate $\int_{1}^{e^{\pi}} \sin (\ln (x)) d x$.

Solution: First u sub to get that $u=\ln (x)$ so $d u=\frac{1}{x} d x$ and $d x=x d u=e^{u} d u$. The new bounds become $\ln 1$ and $\ln e^{\pi}$ which are 0 and π. Thus, we have that the integral is equal to

$$
\int_{0}^{\pi} e^{u} \cos (u) d u
$$

Now we can integrate by parts with $r=\sin (u)$ and $d t=e^{u} d u$ so $d r=\cos (u) d u$ and $t=e^{u}$ to get

$$
\int_{0}^{\pi} e^{u} \sin (u) d u=\left.e^{u} \sin (u)\right|_{0} ^{\pi}-\int_{0}^{\pi} \cos (u) e^{u} d u=-\int_{0}^{\pi} \cos (u) e^{u} d u
$$

We can integrate by parts again to get that the integral is equal to

$$
\int_{0}^{\pi} e^{u} \sin (u) d u=-\left.\cos (u) e^{u}\right|_{0} ^{\pi}-\int_{0}^{\pi} \sin (u) e^{u} d u
$$

So the integral is equal to

$$
\int_{0}^{\pi} e^{u} \sin (u) d u=\frac{e^{\pi}+e^{0}}{2}=\frac{e^{\pi}+1}{2} .
$$

3. Integrate $\int_{0}^{\pi / 2} \sin (x) \cos (x) \sin (\sin (x)) d x$.

Solution: First we u sub with $u=\sin (x)$ so $d u=\cos (x) d x$ and this integral is equal to

$$
\int_{0}^{1} u \sin (u) d u=-\left.u \cos (u)\right|_{0} ^{1}+\int_{0}^{1} \cos (u) d u=-\cos (1)+\sin (1) .
$$

4. Integrate $\int_{0}^{1} 2 x^{3} \sin \left(x^{2}\right) d x$.

Solution: First u sub with $u=x^{2}$ to get

$$
\int_{0}^{1} 2 x^{3} \sin \left(x^{2}\right) d x=\int_{0}^{1} u \sin (u) d u=-\cos (1) \sin (1)
$$

The work is shown above.
5. Integrate $\int_{0}^{1} \frac{\arcsin (\sqrt{x})}{2 \sqrt{x}} d x$.

Solution: Let $u=\sqrt{x}$ so $d u=1 /(2 \sqrt{x}) d x$ and we get that this integral is equal to

$$
\int_{0}^{1} \arcsin (u) d u=u \arcsin (u)_{0}^{1}-\int_{0}^{1} \frac{u}{\sqrt{1-u^{2}}} d u
$$

Let $v=1-u^{2}$ and $d v=-2 u d u$ so the integral is

$$
1 \arcsin (1)-0 \arcsin (0)+\int_{1}^{0} \frac{1}{2 \sqrt{v}} d v=\frac{\pi}{2}+\left.\sqrt{v}\right|_{1} ^{0}=\frac{\pi}{2}-1
$$

6. Integrate $\int_{0}^{1} 5 x^{4} \arcsin \left(x^{5}\right) d x$.

Solution: Let $u=x^{5}$ so $d u=5 x^{4} d x$ and so our integral is equal to

$$
\int_{0}^{1} \arcsin (u) d u=\frac{\pi}{2}-1,
$$

from above.
7. Integrate $\int_{\tan (1)}^{\tan (e)} \frac{\ln (\arctan (x))}{1+x^{2}} d x$.

Solution: u sub with $u=\arctan (x)$ so $d u=\frac{d x}{1+x^{2}}$ and our integral becomes

$$
\int_{1}^{e} \ln (u) d u=\left.u \ln (u)\right|_{1} ^{e}-\int_{1}^{e} d u=e \ln e-1 \ln 1-(e-1)=e \ln e-e+1 .
$$

8. Integrate $\int_{\pi / 4}^{\arctan (e)} \sec ^{2}(x) \ln (\tan (x)) d x$..

Solution: u sub with $u=\tan (x)$ and $d u=\sec ^{2}(x) d x$ to get

$$
\int_{1}^{e} \ln (u) d u=e \ln e-e+1
$$

